графоний;
Сообщений 1 страница 2 из 2
Поделиться22020-08-06 14:35:19
В 1929 году он добился успеха. Уравнение Шредингера было красивым и точно описывало поведение электронов, движущихся со скоростью гораздо более медленной, чем свет. Дирак обнаружил, что если он превращал уравнение Шредингера в более сложное уравнение с помощью объектов, называемых матрицами — что на самом деле означало, что его уравнение в действительности описывало набор из четырех различных взаимосвязанных уравнений — он мог непротиворечиво объединить квантовую механику с относительностью, и, таким образом, в принципе, описать поведение системы, где электроны двигались на гораздо более высоких скоростях.
Однако была одна проблема. Дирак записал уравнение, предназначенное для описания поведения электронов, когда они взаимодействовали с электрическими и магнитными полями. Но для его уравнения, похоже, требовались также новые частицы, почти такие же, как электроны, но с противоположным электрическим зарядом.
В то время в природе была известна только одна элементарная частица с зарядом, противоположным электрону — протон. Но протоны не совсем похожи на электроны. Начнем с того, что они в 2000 раз тяжелее!
Дирак пришел в замешательство. В отчаянии он утверждал, что новые частицы были фактически протонами, но что каким-то образом при перемещении в пространстве взаимодействие протонов заставляло их действовать так, как будто они были тяжелее. Другим ученым, в том числе Гейзенбергу, не потребовалось много времени, чтобы показать, что это предположение не имело смысла.
Природа быстро пришла на помощь. В течение двух лет Дирак предлагал свое уравнение, а через год после того, как он капитулировал и признал, что, если его работа была верна, то должна существовать новая частица, экспериментаторы, наблюдая космические лучи, бомбардирующие Землю, обнаружили свидетельства новых частиц, идентичных электронам, но с противоположным электрическим зарядом, которых окрестили позитронами.
Дирак был оправдан, но он также признал свою прежнюю неуверенность в собственной теории, позже сказав, что его уравнение было умнее, чем он сам!